使用反函数可以对y=arcsinx求导:
因为y=arcsinx,所以得到
siny=x 等式两边对x求导
y'cosy=1
可得y'=1/cosy=1/√(1-sin^2(y))
可得y'= 1/√(1-x^2)
三角函数的求导需要用到的式子:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x=1+tan²x、(cotx)'=-csc²x、(secx)' =tanx·secx、(cscx)' =-cotx·cscx....
对y=arcsinx,
使用用反函数来进行求导比较好,简单一些
y=arcsinx,所以得到
siny=x 等式两边对x求导
y'cosy=1
于是y'=1/cosy=1/√(1-sin^2(y))
即 y'= 1/√(1-x^2)
标签:arcsinx,求导
版权声明:文章由 知识百答 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshbaida.com/answer/186223.html