无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数的性质:
1、无理数加(减)无理数既可以是无理数又可以是有理数。
2、无理数乘(除)无理数既可以是无理数又可以是有理数。
3、无理数加(减)有理数一定是无理数。
4、无理数乘(除)一个非0有理数一定是无理数。
有理数和无理数的区别:
1、性质区别:
有理数是两个整数的比,总能写成整数、有限小数或无限循环小数;无理数不能写成两个整数之比,是无限不循环小数。
2、结构区别:
有理数是整数和分数的统称;无理数是所有不是有理数的实数。
3、范围区别:
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。
标签:无理数,概念
版权声明:文章由 知识百答 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.zhshbaida.com/answer/179787.html